

Copyright Notice

WHITE LIGHTNING

CHEAT SHEET
&

MICRODRIVE MANUAL

Cq,yright @ 1984 by Oasis Software. No part of this manual may be
reprcduced on any nedia without prior written permission frcrn oasis
Software.

Piracy has reachei epidanic proportions and it is with regret that we are
forced to reproduce this manual in a formtiich canoot be p-lotocopied. OUr
apologies for the inconvenience this may cause to our genuine custaners. A
reward will l:.e paid for information leading to the successful prosecution
of parties infriD3"ing this CqJyright Notice.

Do not lose this manual as separate manuals cannot be
supplied under any circumstances.

Copyright © by Oasis Software

Creating Large Sprites
Mewing Sprites
Screen Scrolling
Simple Putting
More AdvancErl Techniques
Collision Detection
Sample Source Listings
The Lunar Lander Program
Table 1 (Lunar Sprites)

APPENDIX A - 'lliE MICRODRIVE VERSION
IntrOOuction
Irrplanenting oo MicrOOri ve
Preparing a Cartridge for Source Ccrle
F.di ting Forth Screens
The F.di t Buffers
Transferring Old Source
B3.d Sectors
Aa:li tional Error Messages
The MicrOOrive Sprite Generator
Irrplementing oo Microdrive
Saving and Loading Sprites
Creating Large Sprites
Merging Sprites

Page

1
2
2
2
4
7
8
9

20

26
26
26
26
27
27
27
28
28
29
29
29
30
30

WHITE LIGHTNING
CHEAT SHEET

This sheet is intended as a supplement to the User Manual and is provided ooly to
"get you started". The best way to use it is to type in the source cede at the
end of this section and exec:ute the appropriate section as you go. You will neerl
the dem:instration sprites in rrarory b.lt sprites 25 to 255 should be deleted to
make enough rraoory available . A w:,rd t.o do this is:

: CIBS 256 25 CO I SPN ! TE.ST IF CSPRI·rE ENDIF LOOP ; <CR >
·rype this in then type CLRS <CR >

It is also \lr,l()rth deleting the large sprites 9, 12, 13, and 14 using:

9 SPN CGPRITE <OD
12 SPN ! CSPRITE <CR>
13 SPN ! OOPRITE <OD
14 SPN ! C6PRITE <CR>

where <CR> rreans press ENrF.R. After execution a.RS should be FOROOI'I'EN using
FORG£•r CLRS <rn>

Follc,..,ing the example oource there is a listing of a canplete garre. You won' t be
able to run it without the sprites b..it we cm provide a tape with the source and
sprites for one p:mnd seventy five ~nee if you think it would te helpful.

Creating Large Sprites

Quite often in games writing large sprites are required which may extend across
several screens. The sprite developnent software can pro:luce sprites with
dimensions of up to 15 by 15 characters. Larger sprites need to 1::e constructed in
the White Lightning itself.

The sample listing for the Lunar Lander contains a routine which we can use as an
example. The Sprite Oeveloprent Prcqram was used to produce 16 sprites, each was
3 high by 8 wide, having sprite numl:ers 10 to 25. The folla,,.,ing routine sets ~
spri te 128 which i s 3 high by 128 wide , and then f ills it with the 16 snall
sprites tefore deleting them to save rranory.

S:Ri8
0 : MAKE 128 SPN ! 3 f-(;T ! 128 LEN ! 0 SR.CW ! 128 SP2 ! !SPRITE
l 16 0 00 I 10 + 00P SPN ! SPl ! I 8 * S:OL ! G\'BIM G'i'ATIM CSPRITE
2 IOOP ;

Line O just defines the big sprite in rrarory and sets $CM to O.

Line 1 loops round 16 ti.rres with I taking the values O to 15. I 10 + calculates
the sprite numter of the sraller sprite and I 8 * calculates the colLITln in the big
sprite that this sraller sprite is to te put into. GlBLM G'i'ATIM rroves the pixel
data , then the attributes, fran the individual sra.11 sprites into the big sprite.
You w:,n' t te able to exe:::ute this example without the 16 3 by 8 sprites but it
illustrates h:,w big sprites are acheived.

Moving Sprites

The chief problem faciog the programrer who wants to rrove sprites around the
screen is choosiog fran the nurrerous sc!')erres available. We nc,,.,r oonsider sa:re of
these rrethcrls, each with its o,m rrerits for speed, sinplicity , sroothness and
storage. We ' 11 b:gin with the easiest to implement and then \lriOrk up to sane of the
rrore elaborate techniques.

Screen Scrolling

Where an object is to te troved within a screen window that does oot oontain any
other objects the screen itself can te scrolled. This is particularly applicable
where rrovement is either OOrizontal or vertical. Diagonal rrovement is also
rossible 1-K,wever. In sa:re cases the object is oonstrained to rrove oo the screen
because parts of the object scrolled off the screen without wrap are lost.

To begin with let's consider a very simple example - rrnving an invader (dero
sprite 24) 2 characters high and 2 characters wide left and right under keyl::oard
oontrol.

The routine is in three sections: the first sets up the base and initial
parameters, the second rroves left or right and the third EX)lls the keyboard and
controls the rrovement.

SETUP O OOL ! 6 RCM ! 24 SPN ! CLS SETAM Pl!I'BIS 2 fm ! 32 LEN ! ;
: IBFl' l'RLlV : : RIGH'f IIR!UV ;
: KEYS l l KB IF LEFT ENDIF 8 l KB IF RlGlfl' ENDIF ;

This will rrove the base by 1 pixel left or right bJ:t by changing the \lriOrds LEFT
and RIGHT to te vRR4V and mI.4V or WRR8V and vRLSV rrovement of 4 or 8 pixels can
be achieved.

To try these routines we'll need a ST1al1 test routine.

: 'IBSTA ATIOFF SETUP fEGIN KEYS 8 2 KB lNI'IL ;

TESTA will loop around until SYMBJL SHIFr is presse:3.. Pressing CAPS SHIF'l' will
rrove the base l eft, pre ssiog space will rrove the base r i ght and press ing SYMOOL
SHIFT will exit the loop.

This routine can also i::e executed in background using-:

: TE'S'I'B fXX SETUP EXX I KEYS INT~

To halt, just type WI'--OFF.

If you've typed in the source at the end of this section type 6 !DAD to a::rnpile
and then TESTA or TE.STB to execute.

Simple Putting

Arx:)ther fairly simple rreans of ooving sprites around the screen is to sinply PITT
sprites with a blank !:::order around then. Suppose the sprite you want to rrove is 2
characters high and 2 characters wide. You will need to construct a 4 by 4 sprite
so that the 2 by 2 sprite can i::e contained with a !:::order around the outside. Make
sure background is off by tYPing JNI'--OFF.

Suppose for example , sprite 24 is a 2 by 2 sprite (you can use dano sprite 24 for
the p.irposes of this example). We'll use sprite 62 for the sprite to be rroved.
To set up sprite 62 use:

2

: MAKE 62 SPN ! 4 frn ! 4 I.EN ! 't'E'n' CF• TF !SPRITE CLSM E2IDIF

This will create and clear sprite 62. New use:

l S'COL ! 1 SROtJ ! 62 SP2 ! 24 SP l ! GJ.Bl.M

Sprite 62 is raw set up ready for u.se . We row ~ four w::,rds to ~ the sprite
UP, ro<N, LEFl' and RIGITT.

UP 7 l KB IF ~ @ 0 > MINCS fOol +! ffiDIF
COi'N 8 l KB IF ~ @ 20 < ~ +! EN)IF ;
LEFT l l KB IF O)L @ 0 > MINlS O)L + ! ENDIF
RIGHT l ~ KB IF OOL @ 28 < OOL + ! ENDIF ;

-rt-.e ENrER and SPACE keys will rrove the sprite Lli.' and IDWfl and CAPS SHIFr and Z
will rrove the sprite left and right respectively.

·roo full w::ird to anl..IM.te t.rie sprite l:ecares:

: 'IB.S'IC 62 SPN ! 10 O)L ! 10 ROJ ! EE:;IN lP IXMN LEFT k~rm AllJM FYiBLS 6 1 KB
UNl'IL ;

To exit 'IBS'f we press the key at 6 1, this is the •p" key.

If you' re usir¥J the source at the end of this section type 7 '.OAr MAKE ~ - 11-e
great limitation of this routine, ~ver, is that data already oo the screen will
l::e replaced by the sprite l:eing Pl1I' and subsequently lost. Before ronsidering the
rrore sophisticated rrethods available to tis which overccrre this liini tation let's
just oonsider sore simpler rrethods of circumventing this problem, \IKlich will 1toOrk
for similar situations.

Supi;:osing the screen OOlds half a dozen or so fixed objects and we -wish to rrove
the invader in the last exarrple throu:;i:h these objects.

First of all let's set up a screen with these objects scattered thr0U3hout.

: SE.TUP 4 SPN ! 3 2 4 5 6 3 5 12 10 9 12 14 6 0 00 R:M ! OOL ! Pl1IORS I.COP ;

Notice that we use the PUIORS w::ird to CR data to the screen; the r eason for th is
will l:ecane c l ear.

We'll row redefine lP, ro,m, LEFr and RIGHT so that spri te 62 i s ooly ' PUT' if i t
is rroved, the new ccrle l:ecanes:

KCHK KB 00P !Or (R SWAP ;
UP 7 1 KCHK IF R::W @ 0 > MINUS ~ +! ENDIF
ro,JN 8 1 KCHK IF Pl.l'J @ 20 < R:::W + ! ENDU' ;
LEFI' l l KCHK IF O)L @ 0 > MINUS OOL + ! ENOIF
RIQIT l 2 KCHK IF OOL @ 28 < OJL + ! ENOIF ;

The ccmplete 11,Qrd tecares:

: 'IESTD CLS EE;IN (l)L @ R:)'1 @ SETUP RO'i ! CX)L ! 62 SPN ! @ UP ro,m w---r R fGH'f r F
ACIJM FWfilS ENDIF 6 l KB lNrIL ;

What is ha.ppening is that as soon as the rroving sprite is PlJJ' to the screen all
screen data is imrediately "CR"ed so that if any was blotted out, it is
irnrediately replaced. Type "P" to exit.

To use the source COOe listings type 8 IDAO TES'I'D

More Advanced Techniques

Often it is oot practical to repeatedly PUl' the screen data which acccrnpanies the
rroving sprite and rrore frequently rrovement is required with a higher resolution
than one character.

To bag in with, let's consider the problan of irrproving the resolution of the
rrovement . Let's v,0rk cgain with a 2x2 sprite (sprite 24 of the deno si;>rites will
do). Type (l)LD to clear previous examples.

Suppose we wish to rrove the sprite around the screen with 2 pixel resolution .
This rreans that between 2 succes s ive C'Ollims there are 4 intermediate
orientations, each successive orientation reing 2 pixels right shifted. This
means we need 4 sprites in all l::efore the cycle is repeated at the next C'Ol1..1Tll1
pos ition.

To J:egin with let's set up the 4 sprites and numl::Er them 100, 101, 102 and 103.
To create these 4 sprites, type:

: MAKE 2 Im ! 3 LEN ! 104 100 00 · I SPN ! !SPRITE Cl.SM I!X)P ;

This will define and clear the 4 sprites and we can now p.lt the character in its
various orientations, into these sprites. Tl'Ere are two stages to this operation.
Firstly sprite 24 needs to re p.it into sprite 100, then sprites 100 to 103 need to
re scrolled and Pill' successively to b..tild ~ the four orientations.

: SETI 0 SRO<J ! 0 9:0L ! 24 SPl ! 100 SP2 ! Qt,IBI.M ;

This sets ~ sprite 100 and the ranaining 3 orientations are set ~ fran this
sprite using:

: SET2 103 100 00 I SPl ! I l + 00P SP2 ! SPN ! (l)PYM \-RR.lM ~IM I!X)P ;

It'sorth p.1tting these sprites oo the screen to,..see what they look like.
Assuming you've executed theords MAKE, SETI and SET2 use:

: 'IE.STE CI.S O COL ! 4 0 00 I 100 + SPN ! I CUP + ~ ! Pln'BLS lOOP 8 0 AT ;

This will pl ace the 4 orientations, one al:x:>ve the other, so that the resolution of
the rcovenent can t:e seen .

To use the source version type 9 I.DAD MAKE SEI'l SET2 TES'I'E

This nc,,,, gives us 2 pixel horizontal resolution so that we nc,.,J have 128 horizontal
plotting i:;ositions in the range O to 127. We need a sirrple formulatiich will
calculate the sprite nlllT\rer and the colunn fran the horizontal plotting P3Sitioo.
This turns out to re very simple:

: HPwr 4 /1'00 COL ! 100 + SPN ! PI.JTBLS ;

So to Pl1I' at X-i:osi tion 27 (54 pixels fran the left hand C'Olum) just use:

27 HPWT

The previous exarrple is useful in that it indicates a way of prcrlocing high
resolution Pill'ting b..tt as it stands cannot re used for animation 1:ecause it does
not enable the rE!I'Oval of prevously placed orientations. Before lcx:>king at a
scheme for animating these orientations let's gene ralise this exarrple to cover
high resolution vertical rrovanent as well as OOrizontal rrovenent.

If ~'re going to give the same resolution of rrovement (2 pixels) in the _vertic-'il
plane, ~• re going to need 4 vertically shifted orientations for each of the
horizontally offset orientations - 16 sprites in all. . '!'his ti.rre they will need to
be 3x3 as opposed to the previously defined 2x3. If you' ·.ie typed in the last
example you' 11 need to delete the old sprites numbered 100 to 103. If so, type:

100 SPN
101 SPN
102 SPN
103 SPN

C6PRITE
t:SPRITE
tsPRITE <CR>
C6PRI'I'E <CR>

Na,,, t ype OJLD to cl ear the dictionary.

To create the 16 new sprites u.se:

: MAKE 3 li3T ! 3 IEN ! 116 100 00 I SPN ! !SPRITE CLSM SETAM UX)P ;

SETl and SE'r2 are nc,.,,, used in exactly the same form as in the previous example to
SP.t up the first 4 sprites· 100 to 103. Each of the OOrizontally offset
orientations needs to be vertically offset "t,_t 2 pi xel s into 4 further
orientations . 100 will be offset into 104, 108 and 112; 101 will be offset into
105 , 109 and 113 and so oo. We ' 11 need a third WJrd SET3 to 00 this.

: SET3 -2 NPX ! 104 100 00 I 00P 12 + S'JAP 00 I 00P 4 + CUP SP2 ! SPN ! SPl
~m.M S:RM 4 +U:OP LOOP ;

Once SETl , SET2 and SET3 have been entered , canpiled and executed, the definitions
can l::e forgotten. Si nce ~ nc,.,,, have 2 pixel resolution in the vertical and
OOrizontal directions ~ have 128 horizontal positions and 96 vertical i;:ositions .
We need a word which can calculate sprite number, colunn and ra.,.i fran the 2 pixe l
resolution co-ords X and Y. The fol101o1ing w:,rd assurres the vertical then
horizontal co-ords have teen placed oo the stack.

: XYPlJI' 4 /M)D OOL ! S'JAP 4 /l-0D RCIW ! CUP + 00P + + 100 + SPN ! ;

So to PUT at X-i;:osition 30 (pixel 60)
Y-posi tion 17 (pixel 34 l

use 17 30 XYPUT PUI'BI.S

Note that the 100 + SPN ! at the end of the definition of XYPur should t:e arrended
so that the number is the sprite numrer of the first of your 16 spri tes .

To use the source type 9 IOAD 10 10till MAKE SE:Tl SE:T2 SE1'3 (Ignore MSG# 4 ' sl

Let's nc,,,,, deal with the animation of the sprite i tself.

Perhaps the rrost p:::,werful rrethoo of sprite animation is via the XOR operation.
The usefulness of this operat i on stems fran the fact that ;,,tien an object is XOR' e:1
with the screen , the screen can be restored simply "t,_t repeating the operation.
The area of screen is restored to the same state as it was before the first
operation (see page 22 of the White Lightning manual l.

We can nc7,1r1 wr i te a routine wh ich m:>ws a sprite around the screen under keyooard
control using a slightly an-ended form of the word XYPur. The routine telaw
assurres the 10 sprites in the range 100 to 115, which each have di.mensions 3x3,
have been set up in the last example.

The fol101o1ing variables will be used.

5

T.3PN Tenporary Value for SPN
'!COL Tanpora ry Value for OJL
'IRO" Tanror-ary Value for oci-l
XC X co-ordinate
YC Y co-ordinate
FLAG Collision Flag

We' 11 also use a constant FSPN which holds the nllffirer of the first sprite in the
ser ies of 16. To adapt these routines for your a.,m use just charge FSPN.

PI.DAD O)L ! ROi' ! SPN ! PlJIXRS ;
PSET 'ISPN@'IR(); @ '1:0L@;
FCAL 4 /M:)D TCOL ! SolAP 4 /M)D 'IRCM ! 00P + DUP + FSPN + + TSPN
M:>VE 'iC @ XC @ fCAL PSBI' PCJIXRS PlDAD ;
PLACE 'iC @ XC @ FCAL PSET PLOAfl

We nc:M need to poll the keyboard:

We use the KCHK ~rd again so that the character is not re-Pill' unless a key has
been pressed.

KCHK KB OOP EO'I' CR s-JAP ;
UP 7 l KCHK IF YC @ 4 > MINUS 'iC +! ENDIF ;
co,JN 8 l KCHK IF YC @ 83 < YC +! .ENDIF ;
LEET l l KCHK IF XC @ 4 > MINUS XC + ! ENDIF ;
RIGHT 1 2 KCHK IF XC @ 115 < XC +! ENDIF ;
KREAD O UP OCklN LEFT RIGHT ;

KRFA) will leave O on the stack if no key was pressed or 1 if a key was pressed.

The canplete ~rd l:ecanes:

: 'IESTF 10 XC ! 10 YC ! PLACE BEriIN KREAD IF t-OVE ENDIF 6 l KB lNI'IL

Note that this loop assunes no interference with the values of OJL, ~ or SPN
bet~ cycles , if you are executing another Forth ""10rd, for exarrple a "'-Urd called
'IRY, then rraJce sure you temporarily stack CJL, RCM and SPN, e.g.

. • • EEGIN KREAD IF M:>VE ENDIF O)L @ RCW @ SPN @ 'ffiY SPN ! RCW ! COL ! 6 l KB tNI'lL

Thi s \\Ord can be easily executed under i nterrupt us i r.:J

'IESTG KREAD IF MJVE ENOIF ;
: TESI'H 10 XC ! 10 YC ! EXX PLACE EXX ' 'IESIG INT~ IB:iIN 6 l KB lNI'lL I.NT-OFF

You will notice , hcMever, that if you do execute this routine under interrupt then
the sprite rray flicker in passage through certain areas of the screen. This is
due to the finite ti.me taken for the dot to scan the screen and can t:e very
annoying.

To execute fran source type 11 LOAD 12 r.DAD then TESTF or 'IESTH

Let 's look oc,.,., at sone oore ~rful techniques which not only help with the
flickering bJt also incll.rle collision detection facilities.

6

Collision Detection

To prcrluce the sroothest JTOverent of all, and incll.rle collision detection, a six
stage operation is used. The technique utilises tloolO dumr.y sprites, and all
interrrediate stages of the operation are carried out in rrer,nry. For this example
let's numter the durrmy sprites 116 and 117. To set~ the sprites use:

: W\KED 3 li'.;T ! 3 LEN ! ll6 SPN ! ISPRITE 5 a;T ! 5 LEN ! 117 SPN ! ISPRITE ;

This needs to te typed in and executed tefore executing the Source C-:de or error
M.SG# 10 will te prcrluced.

The six stage procedure is as follc:Ms:

1. The last orientation Pl!I', together with a ooe character surround, are ror int.o
the SxS dunmy sprite.

2. The last orientation is G'lXRM'a1 out of the Sx5, rest.oring the original scr &:?,;,n
data.

3. The rew orientation is COPYM'ed into the 3x3 durrmy.

4. Tte screen data in the SxS is FWNCM'ed int.o the 3x3 and 9.:AfN ~rfonned oo the
3x3 to detect any collision. A flag is set.

5. The new orientation is ~•oo into the 5x5 dumny.

6. The SxS is Pl1l'BLS'ed ooto the screen .

The code for this algoritlvn is the same as the previous example except that the
word M)VE needs to be m:x:lified.

Define Sprites as for previous example and execute MAKED then use:

SI'EPl -1 CX)L +! -1 RCM +! SPN @ 117 SPN ! GETBLS ;
: STEP2 l OCOL ! 1 ~ ! ll 7 SP2 ! SPl ! QtJXRM ;
: STEP) 116 SP2 ! 'I'SPN @ SPl ! OOPYM ;
: STEP4 OOL @ - OCOL ! ~ @ - SROY ! 117 SP2 116 SPl ! EWNIJ-1 116 SPN ! 9::Afl.1
FLAG +! ;
: STEPS SPl ! G«RM. 117 SPN ! PlJI'BLS PSE'T CDL RCM ! SPN ! FLAG @ IF 100 100
BLEEP 0 FLAG ! ENDIF ;
, ,OVE YC @ XC @ !'CAL PSE:r srEPl srEP2 srEP3 srEP4 srEPS ;

To use the source ccxie type OOLD to clear all previous exarrples then:

11 IDAD FORGE:r >OVE 14 IDAD 12 LOAD 13 IDAD

to o::tr\)ile the w::irds 'IESTF and 'IESTH.

The Bleep will sound when the sprite collides with any other screen data.

7

fp~ ,,;. 2
9'.:R I 6

8

0 : SETUP O O)L ! 6 RC:W ! 24 S
PN ! CL$ Pl1l'BlS 2 t-GT ! 32 LOW !

l , LEFT WRLlV ; : RIGHT >i<RlV

2 : KEYS 1 l KB IF LEFT ENDIF
8 l KB IF RIGHT ENDIF ;

3 : '!ESTA ATIOFF SEI'UP I£XiIN K
El'S 8 2 KB lN!'IL ;

4 : 'IESTB A'I"IOFF FXX SETUP EXX
' KEYS !Nl'--ON
5
6
7

OCR I 7
0 : MAKE 62 SPN ! 4 HG'f ! 4 LE

N ! 'l'E.ST 0= IF !SPRITE CLSM END!
F

l 1 OCOL ! l SROv ! 62 SP2 ! 2
4 SPl ! ~BI.M ;

2 : UP 7 l KB IF RCW @ 0 > MIN
lS R:lW +! ENDIF ;

3 , CO<N81KBIF!Ol@20 <
RCW +! ENOIF ;

4: LEFTllKBIFCDL@O > M
INUS CDL + ! ENDIF ;

5 , RIGHT 12 KB IFOJL@ 28 <
O)L +! &~I F ;

6 : IES'I'C 62 SPN ! 10 (X)L ! 10
FOW ! CLS IB;IN lP CCWN LEFT RI

Gl'f
7 A(lJM "'BLS 6 l KB lN!'IL ;

OCR I 8
0: SE'TUP4SPN ! 324563

5 12 10 9 12 4 6 0 00 !01 ! OJL

l PU'roRS LOOP ; , KCHK KB DUP
!OT 00 S,,01\P ;

2 , UP 71KCHKIF!Ol@O > M
INUS R:M + ! ENDI F ;

3 : CO<N 8 l KCHK IF IOI @ 20
< EO\l +! ENDIF ;

4 : LEFT l l KCHK IF O)L @ 0 >
MINUS OOL + ! ENOIF ;

5 : RIGHT l 2 KCHK IF OJL @ 28
< O)L +! ENOIF ;

6 , TESTO CLS EEX;IN OJL @ !01
@ SEI'UP OC)W' ! COL ! 62 SPN !

7 0 UP CO\'N LEFT RIGHT IF AD.JM
"'BIS ENDIF 6 l KB tmIL ;

OCR I 9
0 : MAKE 2 l£T ! 3 !EN ! 104 l

00 00 I SPN ! !SPRITE CLSM IOOP

SET! 0 SR.CW ! 0 S:OL ! 24
SPl ! 100 SP2 ! G'JBLM ;

2 : SET2 103 100 00 I SPl ! I
l + 00P SP2 ! SPN ! COPYM WRRl.M

3 WRRlM LOOP ;

s

4: TESfECLS0OJL ! 40001
100 + SPN ! I 00P + RClv ! PUTBL

S LOOP80AT;
6 : HPUJ'I' 4 / P-0D OOL ! 100 + S

PN ! PUTB[S
7

OCR I 10
0 : MAKE 3 IC!' ! 3 LEN ! 116 1

00 00 I SPN ! !SPRITE CLSM. SErAM.
l LOOP ;
2 , SE:r3 -2 NPX ! 104 100 00 I

00P 12 + SVAP 00 I 00P 4 + DUP
SP2

3 ! SPN ! SPl ! °"BIM S:RM 4
+LOOP u:x:,p ;

4 : XYPur 4 /l-00 CUL ! ~AP 4
/ M:>D ~ ! 00P + 00P + + 100 + S
PN

5 . '
6
7

OCR i 11
0 0 VARIABLE TSPN O VARIABIE T

OJL O VARIABLE 'lRC>< 0 VARIABLE
XC

l 0 VAAIABLE YC 100 <DNSTANT F
SPN O VARIABLE FI.AG

2 : -PL0AD CUL ! RD'J ! SPN ! PU
TXRS ;

3 , PSET TSPN @ TRO,, @ TCOL @

4 : Fe.AL 4 /M)D 'l'COL ! ~AP 4
/M)D 'm.OoJ ! OOP + OUP + FSPN + +

STSPN ! ;
6 : PLACE YC @ XC @ ECAL PSET

PLOAD ;
7 , OOVE YC @ XC @ PCAL PSET P

UI'XRS Pr.DAD ;

OCR I 12
0 : KCHK KB IlUP roT 00 S,,01\P ;
l,UP71KCHKIFYC@4>MI

NU:i 'fC +! ENDir' ;
2 : CO<N 8 l KCHK IP YC @ 83 <

YC +! ENDIF ;
3: LEF"rllKCHKIFXC@4 >

MINUS XC +! ENDIF ;
4 : RIGHT l 2 KCHK IF XC @ 115

< XC +t ENDH' ;
5 , KREAD O UP IXlWN LEFl' RIGHT

6 : 'IBSTF 10 XC ! 10 YC ! PLAC
E BEXiIN KRFAO IF M:>~ END! F 6 l
KB

7 t..NI'IL ;

S:R I 13
0 : TES'I'G KRFAD IF 1-0VE ENOIF

1 : TESTH 10 XC ! 10 'lC ! EXX
PLACE EXX ' TESTG INT--00 ID;IN 6

1
2 KB l.NTIL INT--OFF
3

OCR # 14
0 : SI'EPl -1 WL + ! - 1 RCW +!

SPN @ 117 SPN ! GETBI.S ;

l : SI'EP2 l OCOL ! l SRCW ! 11
7 SP2 ! SPl ! CK{RM ;

2 : SI'EP3 116 SP2 ! TSPN SPl
! OJPYM ;

3 : SI'EP4 COL @ - S:::OL ! RCW @
- SROi' ! 117 SP2 ! 116

4 SPl ! EWNCM 116 SPN ! s::::M,J,1
FLAG + ! ;

~ : srE:PS SPl ! 0-.'XRM 117 SPN
! PUl'Bl.S PSET OOL ! RCW ! SPN !

6 FLAG @ IF 100 100 BLEEP 0 FL
PG ! ENDIF ;

7 , i'OVE YC @ XC @ ?:A" PSET S
'I'EPl STEP2 STEP) STF..P 4 srEPS ;

Make sure that you delete the unwanted spdtes 25 to 255, 9, 12, 13 and 14 BEFORE
load.ing source co::le fran tape or the source cede will over- run thP sprites .

LLNAR I.ANDER

Var iables

PH Horizontal Phase of .scrolling landscape
SPD t-lorizontal Velocity of scrolling l andscape
ID-'JN Set to 1 if Lander crashes
FU Renaining fuel
XP Vertical Position of Lander
VEL Vertical Velocity of Lander
sx Phase of x-velocity dial
Si Phase of Y-Velocity dial
SFU PMse of Fuel Gauge
LX Phase of Horizontal Position Dial

Sprites

NUMBERS HEIGHT Lrn3TH DESCRIPTION

1 POINTER
J I.ANDI~ PAD

4-9 BIOCKS FUR lANCSCAPE SPRITES
10-25 LANOOCAPE SECTIONS

26,28 ,29,31 PI\NEL SPRITES
32 , 33 MINI lANi:::a:APE

43 EXPWSION
44 tANDEO LLNAR [ANDER
65 CRASHED Ll.NAR [ANDER

100 L~AR tANOER

101- 107 6 Ll.NAR !:ANDER CRIENI'ATIONS
(CX>NS'm.OCTEO)

128 128 <XMPLETE IANCS:APE
(CXlNS'.mOC'I'EDl

9

Sprites 1 to 100 are prcduced using the sprite generator program. Spr ites 101 to
107 are created in the main program using the i;.ord SET. Sprite 128 is constructed
fron sprite s 10 to 25 in the main program using the YoOrd r-w<.E.

The Lunar Lander

This lis ting is provided. as an example of White Lightn i ng pro:;irarcming . In order
to run the game you will need to enter the sprites as described in the next
section. This is a fairly lab:Jrious task so we can offer the fainthearted,
sprites and derro oo tape for ooe p::iund seventy five pence. We reccnmend, hc,,,,iever ,
that you take the tirre to bJild up the sprites yourself as an excercise in self
discip1 i ne if nothinq e l se !

The program executes cne 1oOrd in foreground and ooe i;.ord i n tackground. The
program can be roughly suWivided the following way:

Screens 6 , 7, 8

rt-x:>se set uo the screen display , dials etc.

Screens 9, 10 , 11

TheSP three screens form the routine which scrolls the landscape at ooe of three
s~s. This routine is executed in tackground to give socx:,ther rrovernent .

ScrPens 12 , 13,14 , 15 , 16 , 17

Tl'x:>se control the flight of the lander , manipulate the dials , execute the crashes
and so on .

Screen 18

This executes all the previous definitions in the right order to prcduce the final
game.

Let ' s now look at the program in rrore detail.

SCR # 6
0 : Cl)LOUR O fO-J ! 16 OOL ! 16

LEN ! 23 tCT ! 7 INK 1 ERIGI-IT
l SE'rAV ATTON ;
2:VI'S::CX>L ! l0200I~!

PCJrBLS LOOP ;
3 , SCLE 26 SPN ! 18 vrsc 26 V = MIRM 21 vrsc 29 vrsc MIRM ,
4 : Vl'CL fOv ! OOL ! LEN ! li3T

! PM>ER SE'rAV ;
5 , BARS 4 6 1 20 2 Vl\'.:L 2 2 l

20 8 Vl\'.:L 5 4 l 28 2 Vl\'.:L
6 2 3 l 28 7 Vl\'.:L 5 l 16 11\ 14

VI'CL ;
7 ->

SCR # 7
0 : UID 6 CX>L ! 17 ~ ! 44 SP

N ! PUTBL.5 BEx;IN 7 l KB l.Nl'IL
l 20 RCW ! 43 SPN ! 7 (l)L ! 20

0 00 PUTXRS 100 100 BLEEP f.COP

10

2 44 SPN ! 17 1™ ! 6 (X)L ! PU
'IXRS ;

3 : PTST SPN ! CX>L ! RCM ! PlJI'
BLS ;

4 , 8'RST 14 23 31 PTST MIRM 1
4 24 31 PTSf MIRM 6 28 28 PfST

5 19 16 32 PfST 19 24 33 PfST

6 , LETR 7 INK O PAPER l 18 AT
• " FUEL " 0 26 AT . " VERT" l 26

AT
7 . " VEL " 11 20 AT . " OCJRZ VEL

"; ->

OCR # 8
0 , HRSC 32 16 00 12 I 29 PTST

17 I 29 PfST f.COP 16 16 l Pl'S'T

l , MARK 152 159 PWr 7 0 OOAW

216 127 PL<Yr 7 0 OOAW 128 71 PL
ar

2 0 - 7 DRAW ;
3 : PANEL O PAPER CDl.OUR OCLE

BARS llARST HRSC I£'ffi MARK ;
4 : MAKE 128 SPN ! 3 fCI' ! 128

LEN ! 0 SRCW ! 128 SP2 ! ISPRIT
E

5 16 0 00 I 10 + COP SPN ! SP1
! I 8 * 9:0L ! ~Bl.M G'i'A'rIM CSP

RITE
6 t.OOP ;

0 Vl\RIABI£ PH
7 256 Vl\RIABI£ SPD O Vl\RIA!U

OCMN 1008 VARIABLE FU - >

OCR I 9
0 , Sl 1023 AND 8 / OCOL l L

EN ! PUTBLS 16 LEN ! ;
l , NBRPH@Sl ;

; NBL PH @ 12 8 + Sl ;
2 , OPEN O PAPER 5 INK CLS O P

H ! EXX 128 SPN ! 16 I.EN ! 0 OOL

3 3 1-Gl' ! 21 fO-l ! 0 9:X>L ! 0
SRCM ! Pr'lBtE PWATl'S 2 I-GT ! E){X

4 0 PAPER 1008 FU ! 0 OORDER
SH8 PH @ DUP 7 AND O= ;
FUEL -1 FU + ! ;
SR SH8 IF NBR ENDIF ;
SL SH8 IF NBL ENDIF ;
SH 4 PH @ DUP 3 AND O=
SFSPO+ ! ;
SS SPD @ ; ->

OCR # 10
0, !OLLFU@IF81KBIFSS

-252 > MINUS SF FUEL ENDIF
l 1 l KB IF SS 256 < SF FUEL E

NDIF ENDIF ;
2 : -P - PH ! POU~ ;

+P + PH ! POLL ;
l , SRl SR WRRlV l -P

: SLl SL ~lV 1 +P ;
4 : SR 4 SH 4 IF SR ~4V 4 - P E

L.SE SEU ENDIF EROP ;
5 , SL4 SH 4 IF SL WRL4V 4 +P E

tsE SL1 ENDIF [R()p ;

6 , 00 OCMN @ IF ELSE SS ABS 2
56 < IF !OLL tl<DIF ENDIF ;

7 : SRS SHS IF NBR >RRSV 8 - P
ELSE SR. 4 ENDI F CROP ; ->

OCR I 11
0 : SL8 SH8 IF NBL WRLSV 8 +P

ELSE SL 4 ENDIF ;
l , UR SS 200 > IF SR8 ELSE SR

4 ENDIF ;
2 : , [R SS 7 > IF SRl ELSE 00 E

NDI F ;

3 : RT SS 100 > IF UR ELSE IB
ENDIF ;

4 , UL SS -200 < IF SL8 ELSE S
L4 ENDIF ;

5 : LL SS -7 < IF SLl ELSE 3J
ENDIF ;

6 : LF SS -100 < ff UL .fil..5E LL
ENDIF ;

7 : 00: SS 0< tf Lf ELSE Rr EN
OIF : - >

OCR I 12
0 : SET -1 NPX ! 3 LEN ! 6 i-cr

! 107 100 00 I SPl ! r l+ DUP s
P2 !

1 SPN ! !SPRI TE CDPYM W:::RM [D
OP ;

2 40 VARIABLE XP 8 VARIABIB VE

3: PREP70JL ! oco·m ! 40x
p ! ;

4 : TICK VE!, @ 255 > IF ELSE l
\/El. + ! ENDIF ;

5 , 'lliRUS'f FU @ TP 7 l KB I F V
EL @ -252 > IF -4 \/EL +! FUEL

6 ENOIF ENDIF ENDlF
7 -- >

SCR I 11
0 : MV VEL @ XP fil + CMJP 5631 >

IF [R()P 56 31 l CO-JN ! l:2\IDIF OOP
lXP ! 32/8/l-l)D5-ROW ! 7

ANO 100 + SPN ! RCW @ 0 < IF AflJ
M

2 ?,;BLS ELSE VEL @ 0 < IF l SRO
W ! ROW @ 15 > IF 4 a:;·r ! EL.SE

3 5 rUI' ! E/IIDIF El.5E O SRQ.-.' !
5 icr ! ENO[F ROW @ DUP SR()-1 @ +

4 RClw ! EWBIS fO-J ! ENDIF' ;
5
6
7 ->

OCR I 14
0 : 81\N:; OCMN @ llUP IF 19 ROW

! 43 SPN ! -5 NPX ! 7 a:;r ! 3 LE
N !

l 40 10 DO Pll'l'XRS I 20 + I DO
J I BLEEP LOOP PUI'XRS 17 ~ !

2 S:RV 19 RCW ! 5 +I.OOP SS ABS
8 < IF 21 RCW ! 45 SPN ! PUTBLS

l ENDIF ENDIF XP @ 5631 a IF D
Cl'JN@O=IF7CDL ! I.ND7CDL !

4 MV O VEL ! ENO[F INf-OFF BEx:;
IN 7 l KB UNTIL

5 ' oo:: wr-o, ENDIP
6 : 0KOro.;N.,
7 ->

SCR I 15

0: LANDSSABS8<IFVEL@3
2 < IF PH @ 1023 AND 8 / CASE 12
OF

11

l OK ENIOF 13 OF OK ENOOF JO 0
F OK ENOOF 31 OF OK ENOOF 58 OF
OK

2 ENOOF 59 OF a< ENOOF 91 Or' :)
K .ENOOF 92 OF a< ENOOF END:N:il'

3 ENDIF .E}.JDIF ~ ;
4 128 VARIABLE SX 32 VARIABLE

Si 63 VARIABI.£ SFU
5 : XG S.X + ! 16 OJL ! 13 ~ !

1 H3T ! 16 IBN ! ;
6 : RSETl 7 OOL ! 3 LEN ! ;

: WLEIT -1 XG WRRlV RSE'Tl
7 : \ol{lGH1' 1 XG v.RLlV RSETl

-->

9::R I 16
0 , XVEL SPD @ 256 + 4 / SX @

- 00P O< IF WLEPI' [R()P ELSE O >
IF

l WRIGHT ENOIF ENDIF ;
2 : YG UJP MlNUS NPX ! Si + ! 2

7o.JL ! 2~ ! 8t-J;T ! lIBN !
3 W:RV RSETl ;
4 : WUP -1 YG ;

: WDJWN 1 YG ;
5 , YVEL VEL @ 256 + 8 / SI @

- OOP 0< IF WUP [RQP ELSE O > IF
6 wn:~•m ENOH' ENDIF
7 ->

o.JLOUR

OCR I 17
0 , FVEI, FU @ 16 / SFU @ - 0<

IF 19 OJL ! 2 ~ ! 8 1-G'I' ! 1 LE
N !

1 -1 NPX ! -1 SFU +! w::RV RSE
Tl .E}.JDIF ;

2 0 VARIABLE I..X
3 : MXG 18 ~ ! 16 (X)L ! 16 L

EN ! .l a:;•r ! ;
4 : MLEFI' MXG VlU.lV -1 I..X +! ;

: MRIGHT MXG \oi'RRlV 1 LX + ! ;
5,>0NPH@8/LX@-DUPO

> IF [RQP MRIGH'r ELSE
6 0< IF MI.EFT ENDIF END.If RSE'l'

1 ;
7 ->

9::R I 18
o : Oli'F PANEL PREP • ea: rn·r-o

N ea:;IN TICK n--1.RUST MV r-oN XVEL
1 YVEL fVEL M::>N IANO MJN LNI'IL

IN'l'--OFF ;
2 : 1ST 256 SPD ! 0 PH ! 1008

FU ! 40 XP ! 8 VEL 128 SX !
3 32 Si ! 63 SF'U ! 0 LX ! OPEN

01-'F
4
5
6

vORD IFSCRIPTIONS

Sets the attributes in the eight hand half of the screen.

vrsc

Prcrloces a rc,,,,, of sprites with the current sprite numter at the coltmn m the
stack. Used to bJild l{) the gau;Jes .

9::LE

Uses vrs::: to b.Jild L\:> the gau;Jes .

VICL

Sets up a specified win&:,.,., with specified attributes.

BARS

Uses VICL to set the attributes for the gauges.

12

This word controls the landing sequence . The landed sprite is placed oo the pad
and sits until ENTER is pressed . The explosion is then prcduced t:eneath the
laOOer to simulate take off and the landed lander is then exclusively OR 'erl of f of
the pad.

PTST

General -p.irp:,se word which sets FO'i', COL and SPN fran the stack and then performs
a PIJTBLS •

BAAST

Acxis the finishing tou::hes to the gauges by putting sprites 28,31 ,32 and 33 in the
appropriate p:,sitions. Uses PIST.

LE"1R

Places the gau;e titles atove the gauges .

HRSC

j?uts the horizontal scale on the screen.

MARK

Draws the indicators used in the gauges .

PANEL

Execution \o.Ord to set up theti.ole right hand s ide of the scr een i e . all previous
v.ords.

MAKE

See 'Creating Large Sprites'

Sl

Used to calc ulate the next colum i n the large landscape sprite , to te put to the
screen. IEN is set tack to 16 for the next operation.

Gets the apprq::>riate col1Jlll"I (calc ulate::! by Sl) when the landscape is rroving
right.

NBL

Gets the appropriate colum when the landsca-pe is rroving left.

OPEN

Builds ll' the initial picture for the left of the scre en. Notice the use of EXX
to set up tackground variables for execution under interrupt.

SH8

PH descrites the t;Oase of the landscape with pixel resolution. SH8 checks to see
if this µ-lase is a multiple of 8 and if so sets a flag to indicate that a fresh
colunn should t:e OJT fran the landscape sprite. PH is also left on the stack.

13

FUEL

Decrements the arrount of fuel left.

SR

Ctecks to see if a character t:oundry is crosS(,:-' lsee SH8l and if so executes Nm..

SL

As SR b.it checks when rrovement is left.

SH4

Checks to see if phase is crossing: a half character t:oundary, scrolling can only
increase fran one pixel to four pixel rroverrents oo such a !:::oundary or scrolling
will go out a ~ phase.

SF

Aa::elerates horizontal speed (deccelerates if negative) by the arrount on the
stack.

SS

Puts the current OOrizontal speed oo the stack..

POLL

Checks to see if there's any Fuel left (a non zero value of FU will act as a true
flag) then first checks SPACE to accelerate right if not travelling t.oo fast then
check CAPS SHif'r to ac-celerate left if not travelling too fast. If a key is
pressed fuel is decr.,roented.

-P

Up:lates phase and does a roLL when rroving right.

+P

Upjates phase and cbes a FOLL when rroving left.

SRl

Moves landscape 1 pixel right and 00.justs pointers.

SR4

Moves landscape 4 pixels right and adjusts EXJinters provided a half character
bound.ary has teen reached . If not, a further l pixel rroveme.nt must te made .

SL4

As SR.4 when rroving left.

SJ

When speed is less than 7, keyb:iard is -polled tut oo scrolling of the screen is
executed. The lander is treated as horizontally stationary.

14

SRS

Moves landscapes 8 pixels (1 character) right and a:ijusts p:iinters provided a full
character OOundary has reen reached. If not a further 4 pixel scroll is
executed.

SLS

As ffiB when rroverrent is to the l e ft.

UR

If speed i s greater than 200, try and scroll right 8 pixe ls right, if oot, try and
scroll by 4 pixels right.

[R

If speed is greater than 7 then scroll 1 pixel right else no scroll.

RT

If speed is gD!!'ater than 100 then do a lR if not do an IR.

UL

As UL when speed is negative.

LL

As 1Rtlen speed is negative.

LF

As RF when speed is negative.

DOC

·rhe execution ""°rd which does all the scrolling logic. The w::,rds lR to LF are
effectivel y the o:::rles of a tree which pr cx:luce ooe of 7 possible scrolls fran -8
pixe l s to +8 pi xels. A detailed unde rstanding of the w::>rkings are oot necessary
as 101"13 as you can adapt the routine to serve your needs .

SET

Creates 7 new orientations of the lander fran the original in sprite 100, makinq 8
in all , each lander teing 1 pixel shifted vertically fran the ooe l:efore. This
enables single pixel resolution in the lander rro~nt.

PREP

Used to set up initial valves.

TICK

Ircrerrents vertical velocity (a:ts like gravity) unless terminal velocity has teen
reached. If you want to rrake the garre more difficult change 1 VEL +! to 2 VEL +!
and thus double the planets gravity.

15

'IliRUST

If the lander still has fuel and hasn't reached tenninal upward velocity then increase up.ard velocity.

MV

A fairly canplicated 1<10rd which rroves the lander vertically. The velocity is added to the position (i;i'lysicists note that unit time has elapsed etc). If the lander goes under the base its [X)Sition is p.it equal to the base and a::MN is SET to 1. The rCM and orientation are then calculated.

llMK,

Another fairly involved w:ird which executes a crash if IXM'N=l. It checks to see if a sate landing was rrade and if not decides what sort of crash is required.

OK

A short \<\Ord which sets caiN to 0 , indicating a safe landing.

!AND

If the lander has zero sideways velocity then vertical velocity and horizontal position are checked for a safe landing or a crash. a:MN is set accordingly.

XG

Up:jates X-VEL PHASE and sets window for scroll.

RSE.Tl

Sets CDL and LEN back after XG.

XVEL

Controlling routine for XVEL gatge.

YG

Used to adjust Y-VEL gatge.

WUP

Move q:t Y-VEL gauge.

WlUiN

Move down Y-VEL gall:Je.

YVEL

cont.rolling routine for Y-VEL gatge.

FVEL

Controlling routine for Fuel gaU3e.

MXG

Used to set up windc,,,., for sna.11 screen rrovenent .

16

MLEPr

Move p:::>int.er left oo srall screen.

MR.IQ-IT

Move p::,inter eight en snall screen.

MON

Control routine for scroll screen.

OFF

Main program loop.

'I'S'r

Final executions WJrd. Initialises parameters and then executes rrain pr03ram
loop.

'IHE G1\ME ITSELF

ffif.ATION OF SPRITES

Leed up the sprite developnent package and create all the sprites listed in table
1.

Once the sprite developnent package has loaded execute a oold start by pressing
the C key and hit Y for yes and then N for the change buffer size prcrnpt.

Set the attrirute switch to 1 by pressing the A key and then 1.

With refernnc-e to table l set the sprite numt:er to the required value by pressing
the S key and then inputing the required value . Irt)ut the dlllensions, (Heigh t and
Length) of the sprite by pressing the H or C keys and then inputing the
appropdate values. Set the respect i ve ink, paper, flash and bright values using
the X, C, V and B keys.

Position the sprite screen X and Y -pos cursors to their settings using the syml:x)l
shift 5,6, 7 or 8 keys.

Usirx;y the direct data input funct i on , key D, input the 8 bytes of data. Move the
X and Y pos cursor s to the next t,0sition and i nput the data until the sprite is
canplete oo the screen. Set toth the X and Y position cursors to l and then GET
the ' spr i te into irerrory by pressing the G key . Clear the sprite screen by pressing
syml:ol shift Q and then create the next sprite.

CREATION OF 'IHE 6 4x3 OiARlCIBR lANCS::APE SPRITE

This sprite wi ll te made up of 8 Bx) character sprites , wtl ich will be joined
together into ooe large sprite in the White Lightning prCXJram itself.

Set the ink to 7, the i,::aper to 0, the flash to O and the bright to 1 clear the
QiR$ square by pressing the Q key. Usi ng the sprites 4,5,6 , 7 , 8 , 9 and the Offi.$
square (referred to as O) tuild up sprites 10 to 25 as layed out in diagram 1.

17

Position the X and Y Pos cursors to the appropriate co-ordinates. Input
the relevant sprite numt:er and put the sprite to the screen by pressing the
D key and then 1. In the case of O press J to IXMP the empty CIR$ square
to the sprite screen.

The landing pad , sprite 3, is also placed in these sprites.

once the 8 by 3 sprites rave teen created oo the screen, position the x and
Y p:,s cursors to the top left corner ot the sprite. Set the sprite numl:er
to the appropriate value, set the le.D:Jth to 8 and the height to 3 then
press G t.o get the sprite.

Note that the left hand ooll.JTIO of sprite 10 must M.ve a O INK value as -well
as the right hand colt.11'11 of sprite 11.

Once all the sprites have teen created save them off to tape using the
symbol SIUFr S key.

Load in White Lightning, load in the lunar sprites. Carefully type in the
Lunar Lander program as listed and check your program against the original.
It is ro,,, t:est to save your source off to tape.

Exit to BA.SIC using:

then save to tape using:

PRO; <CR>

SAVE"LUOI\R" ClJOE 52224,6656

Go back into White Lightning using: PRINT I.BR 24836

- type
6 WAD <CR>
MAKE <CR> to create the landscape
SET <CR> to create the 1.arxiers

To run the program type TST <an

Please note that if there is an error in your source the last few screens
can no longer t:e listed or canpiled, since the creation of extra sprites
has overwritten the end screens , thus the source "-OUld have to be reloaded
for editing p.1rposes.

PLAYIN;; IBE GAME

The garre itself is rrore of a simulation than a garre. The idea is to land
on all four bases without running out of fuel or crashing. Tre gau;Jes are
self explanatory.

The controls are: CAPS &UPI'
IRFJ\K SP/>CE
m=

Thrust to the left
Thrust to the right
Vertical thrust

Once the game is over, hit the ENl'ER key to escape and then 1ST <CR> for a
new gane.

FUEL

If fuel runs out the controls will no longer function.

YVEL

A safe landing is only made if the VEL gau;Je registers a velcx:::i ty in the
"safe" region of the centre of the gau;Je.

18

XVEL

The h::>rizo~tal velocity is represented by ooe of 3 scroll speeds b.Jt safe landings
can ooly be made if the p:,inter is in the " safe" region in t.he centre of the
gauge.

'!HE 9-iALL OCREEN

This gives a macroscopic view of the 8 screens. The ta.ses are markerl. The gauge
scrretimes cannot keep up with the lander rrovement tut at scroll spee:l.s of a pixel
it will soon "catch up" with the real ?)Sitions . This is not a "foature" ~ must
admit, keeping up with the gai..ge slows the foreground prcgram dc1wn a l ot .

19

TA
B

LE
1

SPR

IT
E

H

L

IN

K

P
A

P
E

R

F
LA

S
H

ffiIG

H
T

XPO

S
Y

PO
S

1
1

2
7

u
0

1
1

1
29

29
28

15
7

3
0

0
1

1
2

7
0

0
1

2
1

92
92

28
120

112
96

128
128

J
1

6
7

0
0

1
1

1
255

227
127

0
60

24
60

126
J

1
6

7
0

0
1

2
1

25
5

142
255

63
31

63
31

63
J

l
6

7
0

0
l

J
l

255
28

255
255

255
255

255
255

J
1

6
7

0
0

1
4

l
25

5
28

255
255

255
255

255
255

J
l

6
7

0
0

l
5

l
25

5
113

255
254

252
254

252
254

3
l

6
7

0
0

l
6

l
25

5
199

254
0

60
24

60
126

4
1

1
7

0
0

1
l

l
12

8
64

160
80

168
84

170
85

5
1

1
7

0
0

1
l

1
0

1
2

5
10

21
42

85
6

l
l

7
0

0
l

l
1

170
85

170
85

170
85

170
85

7
l

l
7

0
0

l
1

l
128

65
162

85
170

85
170

85
8

l
l

7
0

0
l

1
l

0
0

0
0

8
20

42
85

9
l

l
7

0
0

l
1

1
0

0
0

0
0

16
40

85
26

l
l

6
0

0
l

1
l

25
4

2
2

2
JO

2

2
2

28
l

l
2

4
0

l
1

1
0

0
0

0
255

255
255

255
29

l
l

6
0

0
l

l
l

12
8

128
128

ll6

ll6

ll6

255
0

31
1

l
5

1
0

1
1

1
254

254
254

254
254

25
4

254
254

32
l

8
J

0
0

1
1

l
0

l
155

155
255

255
255

255
32

1
8

J
0

0
1

2
l

0
0

226
230

255
255

255
255

32
l

8
J

0
0

1
3

l
63

33
127

127
255

255
255

255
32

1
8

3
0

0
1

4
l

0
0

59
251

255
255

255
255

32
l

8
J

0
0

1
5

1
J

2
223

223
255

255
255

255
32

1
8

3
0

0
1

6
l

240
16

254
254

255
255

255
25

5
32

1
8

J
0

0
1

7
1

0
24

127
127

255
255

255
255

32
1

8
3

0
0

1
8

l
0

0
231

231
255

255
255

255
]
]

1
8

J
0

0
l

1
1

1
26

66
254

255
255

255
255

255
]
]

l
8

J
0

0
l

2
1

0
1

6

126
126

255
255

255
255

]
]

1
8

3
0

0
l

J
1

0
0

143
143

255
255

255
255

]
]

1
8

J
0

0
1

4
1

0
0

254
254

255
255

255
255

]
]

1
8

J
0

0
l

5
1

1
26

66
1

27
255

255
255

255
255

]
]

1
8

J
0

0
l

6
1

1
8

18
255

255
255

255
255

255
]
]

l
8

J
0

0
1

7
1

0
0

255
255

255
255

255
255

]
]

1
8

3
0

0
1

8
1

0
0

167
167

255
255

255
255

0 N

·!'
A

BL
E

l
(C

oo
ti

n
u

ed
 J

--

--
--

-

SP
R

IT
E

H

L

IN

K

PA
PE

R

ru
\S

H

!:R
IG

H
T

XP

O
S

Y
PO

S
1

·
2

--
--

--
-
-
-
-

--
--

-
--

--
--

-
-
-

--
-

43

3
3

6
0

0
1

1
1

96

11
4

88

46

18
1

26

21

90

43

3
3

6
0

0
1

2
1

16

41

88

10
4

21
2

17
4

85

17
0

43

3
3

6
0

0
1

3
1

12
8

2
14

20

40

20

8
98

22

4
43

3

3
6

0
0

1
1

2
13

10

53

23

4
61

10

21

42

43

3

3
6

0
0

1
2

2
85

17

0
85

17

0
85

17

0
85

17

0
43

3

3
6

0
0

1
3

2
64

16

0
80

17

4
12

0
19

2
64

22

6
43

3

3
6

0
0

1
1

3
85

17

0
25

5
2

70

13

42

12

43

3
3

6
0

0
1

2
3

85

17
0

89

16
8

20
8

49

16

0
43

3

3
6

0
0

1
3

3
96

18

0
16

8
21

6
40

20

74

7

44

4
5

5
0

0
1

1
1

0
0

0
0

0
0

0
0

44

4
5

5
0

0
1

2
1

0
0

0
0

0
0

0
0

44

4
5

5
0

0
1

3
1

0
0

0
0

0
0

0
0

44

4
5

5
0

0
1

4
1

0
0

0
0

0
0

0
0

44

4
5

5
0

0
1

5
1

0
0

0
0

0
0

0
0

44

4
5

5
0

0
1

1
2

0
0

0
0

0
0

0
0

44

4
5

5
0

0
1

2
2

0
0

0
0

1
1

7
6

44

4
5

5
0

0
1

3
2

0
0

0
0

16
5

25
5

66

36

44

4
5

5
0

0
1

4
2

0
0

0
0

12
8

12
8

22
4

96

44

4
5

5
0

0
1

5
2

0
0

0
0

0
0

0
0

44

4
5

5
0

0
1

1
3

0
0

0
0

0
0

0
0

44

4
5

5
0

0
1

2
3

12

15

5
0

7
13

21

3
47

44

4

5
5

0
0

1
3

3
24

25

5
90

0

25
5

90

90

25
5

44

4
5

5
0

0
1

4
3

48

24
0

16
0

0
22

4
17

6
17

1
24

4
44

4

5
5

0
0

1
5

3
0

0
0

0
0

0
0

0
44

4

5
5

0
0

1
1

4
0

0
I

6
9

22

72

48

44

4
5

5
0

0
1

2
4

23
7

22
1

12
7

14
0

48

19
2

0
0

44

4
5

5
0

0
1

3
4

36

16
5

25
5

12
9

44

94

19
1

19
1

44

4
5

5
0

0
I

4
4

18
3

18
7

25
4

49

12

3
0

0
44

4

5
5

0
0

1
5

4
0

0
12

8
96

14

4
10

4
18

12

45

3

3
7

0
0

1
1

I
0

0
18

9

9
55

33

65

45

3

3
7

0
0

1
2

I
0

0
12

24

56

11

2
23

1
20

7
45

3

3
7

0
0

1
3

I
0

32

80

8
4

58

19
6

20
1

~

TA
BLE

1
(C

ootin
u

ed
)

SP

R
IT

E

H

L

IN
K

P

A
P

E
R

FLA

S
H

!R

IG
H

T

X
PO

S
Y

PO
S

45

3
3

7
0

0
1

1
2

67
71

46
60

56
17

131
64

45
3

3
7

0
0

1
2

2
191

44
78

187
119

46
25

123
45

3
3

7
0

0
1

3
2

18
37

194
5

138
197

138
5

45
3

3
7

0
0

1
1

3
160

81
162

82
170

84
170

85
45

3
3

7
0

0
1

2
3

6
230

248
248

244
163

82
85

45
3

3
7

0
0

1
3

3
42

21
42

85
170

85
170

85
100

6
3

5
0

0
1

1
1

0
0

0
0

0
0

0
0

100
6

3
5

0
0

1
2

1
0

0
0

0
0

0
0

0
100

6
3

5
0

0
1

3
1

0
0

0
0

0
0

0
0

100
6

3
5

0
0

1
1

2
1

1
7

6
1

2

15
5

0
100

6
3

5
0

0
1

2
2

165
255

66
36

24
255

90
0

100
6

3
5

0
0

1
3

2
128

128
224

96
48

240
160

0
100

6
3

5
0

0
1

1
3

7
13

213
47

237
221

11
21

100
6

3
5

0
0

1
2

3
255

90
90

255
36

165
255

129
100

6
3

5
0

0
1

3
3

224
176

171
244

183
187

208
168

100
6

3
5

0
0

1
1

4
34

68
248

144
160

64
144

96
100

6
3

5
0

0
1

2
4

44
94

191
191

0
0

0
0

100
6

3
5

0
0

1
3

4
68

34
31

9
5

2
9

6
100

6
3

5
0

0
1

1
5

0
0

0
0

0
0

0
0

100
6

3
5

0
0

1
2

5
0

0
0

0
0

0
0

0
100

6
3

5
0

0
1

3
5

0
0

0
0

0
0

0
0

100
6

3
5

0
0

1
1

6
0

0
0

0
0

0
0

0
100

6
3

5
0

0
1

2
6

0
0

0
0

0
0

0
0

100
6

3
5

0
0

1
3

6
0

0
0

0
0

0
0

0

!:::

DIAGRAM1

2 3

7

8

8

7

8

6

7

8

6 tt~~· .. i
7

8

11 INK
l
456789AB

4 11 g 8 9 IJ 5 6

6 4 5 6 6 7 6 6

6 6 6 6 6 6 6 6

SPRITE 1.8'

4 5 6 8 9 A BJ. 6 INK

4 8 9 g I{ 9 8 g

6 6 6 4 5 6 6 7 SPRITE 11

6 6 6 6 6 6 6 6

SPRITE 12

456789AB

9 11 5 4 8 11 8 8

6 6 6 6 6 ·1 6 6 SPRITE 13

6 6 6 6 6 6 6 6

4 5 6 7 8 9

5 4 11 9 5 4

6 6 7 6 6 6 6 6 SPRITE 14

6 6 6 6 6 6 6 6

4 5 6 7 8 9 A B

si>'Ril'ea)j'! ·~· 1 ir7 :· ·.: '>:->;" , 8 5 4 J1

6 6 6 6 6 6 6 4 SPRITE 15

6 6 6 6 6 6 6 6

23

DIAGRAM 1 CONTINUED

4 5 6 7 8 9 A B

6 g 9 5 6 6 4 8 9

7 5 6 6 6 6 6 6 6 SPR ITE 16 --
8 6 6 6 6 6 6 6 6

4 5 6 7 8 9 A B
I

6 5 4 8 ti 11 5 7 4

7 6 6 6 7 7 6 6 6 ~17

8 6 6 6 6 6 6 6 6 '

4 5 6 7 8 9 A B

~~ ~ S-PRITe'3 ~~· ·~·· 6 9 ' i~ti l' If -: ~- = " 1:-... ~.-- •

7 6 6 6 6 6 6 6 4 SPRITE 18

8 6 6 6 6 6 6 6 6

4 5 6 7 8 9 A B

6 ti 8 5 6 4 8 9 g

7 5 6 6 6 6 6 6 7 SPRITE 19 - -.
8 6 6 6 6 6 6 6 6

4 5 6 7 8 9 A B

6 8 g ,, J{ 5 7 7 4 I

7 6 7 4 5 6 6 6 6 SPRITE 211

8 6 6 6 6 6 6 6 6
, .

4 5 6 7 8 9 A B

6 8 5 4 5 4 8 9 g

7 6 6 6 6 6 6 6 4 ~21

8 6 6 6 6 6 6 6 6

24
I

DIAGRAM 1 CONTINUED

6

7

8

6

7

8

6

7

8

6

7

8

8 9 A B

4 5 6 7 8 9 A B

8 9 5 6 7 7 6 4

6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6

456789AB

9 5 4 8 9 9 5 7

6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6

456789AB

4 II 8 II g 8 5 7

6 7 6 4 5 6 6 6'

6 6 6 6 6 6 6 6

SPRITE 22

~23

~24

SPRITE 25

25

MICRODRIVE WHITE LIGHTNI"3

IN'I'ROOU:TI ON

In order to make rraxirrn.1TI use of the Spectrum I s 48k of rrerory the tape based White
Li ghtning was located at 24832 decimal. This leaves roan for a sna.11 PAS IC loader
program. If, however, interface 1 is fitted , the execution of any of the shadow
ROO C011T1arY.is will cause PA.SIC to be relocated ll[:1,'lards and result in insufficient
merrory for the tape tased loader prog-rarn.

It was therefore decida:i, on canple tion of the tape based program , to develop
another version w'hich v.0uld not only te mic rOOrive canpatible b..it w::>uld also
utilise the dr i ves to C'Ol'lpile source cede. Unfortunately J:::ecause of the way that
the shada,.,, Ra1 operates , the &\SIC i nterface part of the software is no longer
practical and therefor e Micrcrlrive White Lightning no longer has this feature .

The ed.iting bJffers have now i:een rroved up to occupy the old screens 6 , 7 and 8,
and an extra lk of dictionary space is nc,.,;o available. Source code is nc,,,,, canpi l ed
dir-ectly fran microdr ives and so sprites can t:e stored fron 53760 onwards.
Mic rodriv~ screens 1 to 19 are utilised by the sys t em but you can edit any of the
screens 20 to 150. This rreans tliat Mi crcrlr i ve White Lightning can handle six
times as much source code without any troublesone reloading fran tape.

L'IPLEMENrl t,3 00 MICROOOIVE

1 . Insert Tape 1 in your cassette and rewind to Side A.

2. Type IOAD"" and when "i\\\1L" has loaded it will auto- run, format your
micr0dve and save the PASIC loader and machine ccrle.

3. To run tile micrcx:1rive version just type IOAD *"M";l; "MML" and it will
load and execute.

PRf.PARING A CARTRICGE FOR s:JURCE ())DE

Before us ing the mic rcrlnve ver sion it is necessary to set up a separate cartridge
for storing and loading source CCOe. '!'his version has teen designed to w:>rk
exclusively with m.icrod.rive numter 1.

To set up the cartridge, insert it in microd.rive 1 and execute the fol l ()l,,li ng:

FORMAT"M" ;l ; "name " :OPEN #4; "M" ; l; "a ":
FOR I-1 10 100000: PRINn 4; 0lR$ 32 ; : NEXT I

Note the lower case "a" used in the filena.me .

After several minutes , the e rror rressage "MJCRODRI VE FULL" will l::e printed. You
should no.,, key i n:

CTDSE#4

to close tli is f ile . To check tha t you have a oorrectly prepar ed cartridge, type:

CAT l

"a" should re prin ted en the screen to indi cate a s ing l e f ile cal l ed "a " and O to
i ndicat e ze ro bytes free.

26

Please note that this cartridge should be clearly labelled and used exclusively
for SAVEing and IDADing Forth source code while you are a:liting Forth screens.
Sprites, eASIC and blocks of rrachine cede should be SAVEd en a separate cartridge
or cartridges. There are no ccmnands within White Lightning to manipulate
micrcdrives, therefore all such cx:rnra.nds (e.g. FORMAT, ERASE, OPEN#) are executed
fran MSIC after exi tting via the PRCX; CCilll\3.00.

EDITII~ FORTH OCRE!lNS

Forth oource cx:xle is still IDITai in exactly the sane way as the tape versioo
(using EDIT,P,S,D etc. l except that EDIT will not autcrnatically execute a FU.EH .
This rreans that your EDITs will not be ~ted on micrcrlrive until you type FLlSH,
so te sure to renember to 00 this tefore rroving oo to another screen.

TIIE EDIT OOFFERS

To give sane idea of lx::M White Lightning uses the m.icrcx:lrives for Forth source,
the foll<Ming brief description rray te helpful.

There exists in RAM an area of 1024 bytes called the edit Wffer, which can hold
two 512 byte Forth screens. If you issue a ccmnand which requires the use of a
screen (LIST, CLEAR or INDEX) then this screen will te read fran the microdrive
into the edit b.lffer. If the edit Wffer already contains two screens and they
have teen altered in any way since they W'l=re last loaded, then they must first l:::e
saved (using FLIBH) tack to the drive in order to allow the currently required
screen to te loaded in.

~ote that l:::efore a screen is first edited it will nee::1 to be cleared using tile
CLEA.R camand as it will probably contain gartage. For example, before using
screen 20 for the first tirre, type:

20 CLEAR 20 LISS'

'.lRANSFffiRI,,;; OLD SOtRCE

If you have already written a sizeable pr~ram with the tape tased White
Lightning , then you will want to trans fe r i t to your rnic rcdrive based White
Lightning without having to conpletely re-type it. To do this, use the
following:

l. Type OLD <an.

2. Type PR.ex; <CR> and load your old source cede fran tape in the nonnal way.
Then re-enter Forth as normal.

3. Transfer each 5ereen fran its old numter in nerory to its new number on
the micrcrlrive using:

OLl:6CREEN ~SCREEN '!RANS <an

So, for example, to transfer the old screen 6 to micrcdr:ive screen
25, use:

6 25 '.lRANS <CR>

If a tad sector is encountered you will get error rressage 8. Skip
over this sector and try the next ooe (see next section oo PAD SEC'IORS).

27

4. Finally type NtW <CR> to rest.ore the editing b.Jffers to their micrcrlrive addresses.

Regrettably, at the tirre of writing, whilst the rnicrcrlrive cartridge costs a.l:xmt twice as much as a standard 5 1/ 4 inch floppy, the number of J::ad sectors is still extranely high. Forth screens map directly to rnicrodrive sectors, so screen 25 uses sector 25 and so oo. So as we: shall see, sane screens may te unusable.

A bad sector will te identified by White Lightning the first time a read or write operation is carried out, and error 8 generated. Note that executing Cl,FAR will mean that you can find l:ad sectors tefore 00.iting into than. If you do find a J::ad sector, keep a note of it and don't use that screen . There is a si.rrple way around this problem as we: shall see in the follc:,..,,ing example. Assl.llre we want to a::lit into screens 25 to 28 and that we: did the follc:,..,,ing:

1. Type 25 CLFAR O EDIT

2. Key in text for lines O to 6.

3. Type 7 EDI T then key in --> to indicate continue with next screen when IDADing .

4. Type in 26 CLFAR O EDIT.

5. Key in text for lines O to 6.

6. Type 7 EDIT and key in -->.

No,,;, supp::>se when we: typed 27 0£.AR, that we got error 8, indicating drive error. This 'nC>uld rrean that sector 27 was a bad sector and therefore that screen 27 was unusable.

Ranember that i n screen 26 the last line was

7 ->

which tells Forth to continue IOAOing oo the next screen. The next screen is screen 27 which is unusable, so we: have to change the last line of screen 26 to becare

7 28 IDAfl

which tel l s Forth to oontinue IDADing at screen 28. This will then skip over the bad sector.

ADDITIONAL ERROR MESSAGES

- I ncorrect Acd.ressing Mode.

- Stack overflc:,..,, .

- Micrcrlrive read/write error (l::ad sector).

28

Sll+IAAY OF MICRODRIVE WHI'rE LIG!fl'NIN'.i

1. Only use specially prepare::i cartridges for EDITing and use them
exclusively for storing screens.

2. O£AR a screen l::efore using it for the first time and change the
previous screen to skip over it if it is a tad sector. Do not use
this screen again.

3. Micro:lrive o::mna.nds such as ERASE, VffiIFY etc. can J::e executed after
entering BASIC using PRCG.

4. Do N)T break into the program (SHIFT and SPACE) while the micrcrlrive is running.

5. RESERVE oo longer executes.

6. There are sore 00.ditional error nessages (listed above).

7. Always execute a FLlSH after a:iiting of a screen is cx:mplete.

'lliE MICRODRIVE SPRITE GENERA'IDR

INIROOU::TION

The microdrive Sprite Generator Program is upwardly canpatible with the current tape tased version and tape IDADing and SAVEing is still supported. An extra
cx::mnand has teen added to rrake the creation of large sprites easier and the arcade character set has teen re-organised to give extra sprite space.

IMPLEMENI'IN:i 00 MICRODRIVE

The first thing to do is to transfer the program ooto a micrcrlrive cartridge.

1. Insert Tape 1 in your cassette and rewind t.o Side A.

2. Type IDAD"",IDAO""OJDE

3. Place a formatted cartridge in microdrive 1.

4. Type roI0 9998.

This will save and verify the generator cnto the micrcrlrive. New type PRI.ITT l.SR 0 t.o clear rrenory.

The microdrive version can rKM be IDADe::l and RUN by typing:

LOAD *"M";l;"S"

SAVIJ-.:; AND IDAOIN:i OF SPRITES

The micrcrlrive version of the Sprite Oevelopnent Program still allO'wS sprites to be loaded and saved fran and to tape as described in the nanual.

A separat':! cartridge is required to store sprites. The program will allOW' you to save five files of sprites {:er cartridge, these being numbered 1 to 5.

29

Before a cartridge can l:e used to store sprites, it has to be 51:)eCially formatted.
This is done using the Sprite Generator Prcgram by typing SYMIDL SHI FT F ('00).
1'his will fonnat the cartridge and set up five dLfflTIY files, nW'Lbered 1 to 5. Fran
now on, whenever you save a file of sprites, the old file of that number will be
erased to conserve cartridge storage spaice.

For example, if you wished to save a file of sprites currently in rrerory, to file
1, use:

1. Type SYMOOL SHIFr S (save sprites).

2. Type N

3. Type y

(we don ' t want tape).

(save to drive).

4. Insert the formatted cartridge .

5. Press any key.

6. Type 1 (save to file ll.

To load sprites just press SYMBJL SHIFI' J and then follc,.,,, the same seqU;nce as
that used to save.

AVAUABLE MEMJRY

You have 13595 bytes available for sprites. Please note that the tottan 2816
bytes, locations 51685 to 54501 are used to store the arcade character library
accessed bj the 'Z' key. If, by creating lots of sprites, you overwrite this area
of rrarory, you should not try to access any of these dlaracters .

ffiEATION OF IJ\RGE SPRITES

The micrcdrive version of the Sprite Developnent Package allows the creation of
large sprites (larger than the 15xl5 screen) in rraoory. These sprites can be said
to t:.e empty wtien created and have to t:.e filled bj placing smaller sprites into
than using the 'place sprite into sprite window' function (EREAK SPACE KEY).

To create a large sprite hit CAPS SH I FI' C and enter the dunens ions as instructed.

ME.RGit,'.; SPRITES FRC,, MICRODRIVE

Th: actual microdrive file that contains the sprite data has the capital letter B
after it (CHR$ 66) such that, for exarrple, the sprite data for sprite file '5 1 is
file 1 58'.

So with reference to line 5 ai page 81 of the White Lightning rranual: to rrerge
fran micrcdrive the sprites of sprite file 5 in White Lightning, exit to BA.SIC and
then type:

LOAD *''M'';l;"5B"CODE

30

	Creating Large Sprites
	Moving Sprites

	Screen Scrolling

	Simple Putting

	More Advanced Techniques

	Collision Detection

	Sample Source Listings

	The Lunar Lander Program

	Table 1 (Lunar Sprites)

	APPENDIX A - THE MICRODRIVE VERSION

	Introduction

	Implementing on Microdrive

	Preparing a Cartridge for Source Code

	Editing Forth Screens

	The Edit Buffers

	Transferring Old Source

	Bad Sectors

	Additional Error Messages

	The Microdrive Sprite Generator

	Implementing on Microdrive

	Saving and Loading Sprites

	Creating Large Sprites

	Merging Sprites

